La tecnología QD-OLED, explicada: así funcionan los paneles con los que Samsung aspira a poner contra las cuerdas los OLED de LG

La tecnología QD-OLED, explicada: así funcionan los paneles con los que Samsung aspira a poner contra las cuerdas los OLED de LG

  • Las matrices QD-OLED destacan por su capacidad de entrega de brillo y su reproducción del color

  • Los paneles orgánicos de 2023 no son iguales que los lanzados por Samsung en 2022

25 comentarios Facebook Twitter Flipboard E-mail
Qd Oled Ap

Las cartas ya están sobre la mesa. Los paneles QD-OLED (Quantum Dot-Organic Light Emitting Diode) para televisores fabricados por Samsung ya han visto la luz oficialmente. En 2019 los medios de comunicación surcoreanos desvelaron que esta compañía estaba trabajando en ellos, aunque con toda seguridad la puesta a punto de estos paneles comenzó varios años antes. Desde entonces la información ha ido llegando con cuentagotas, pero lo importante es que, como anticipamos a principios del pasado mes de diciembre, ya están aquí.

La primera marca que ha anunciado oficialmente el lanzamiento de un televisor equipado con el nuevo panel QD-OLED de Samsung ha sido Sony. Por el momento esta tecnología solo estará disponible en su modelo insignia durante 2022, el Master Series A95K, pero es muy probable que cuando llegue la próxima generación esta tecnología de panel se extienda a otras gamas de televisores de la marca japonesa. Y, por supuesto, también es probable que durante las próximas semanas otros fabricantes anuncien sus propios modelos QD-OLED.

Lo que a nosotros nos ha sorprendido es que haya sido Sony la primera en enseñarnos un televisor con panel QD-OLED, y no Samsung, que es, al fin y al cabo, la empresa que ha diseñado esta tecnología y fabrica los paneles. No obstante, estamos completamente seguros de que la compañía surcoreana presentará muy pronto (posiblemente no más allá de este viernes) sus primeros televisores QD-OLED. Y lo estamos porque se ha filtrado que estas teles van a ser premiadas en CES 2022 por su capacidad de innovación. La filtración procede de la propia organización del evento, así que es fiable.

Por otro lado, es evidente que la llegada de los paneles QD-OLED de Samsung al mercado de los televisores amenaza la hegemonía que mantiene LG desde hace años en el ámbito de los paneles orgánicos de gran formato. Sony, Panasonic, Philips, Hisense, Loewe, Metz o Vizio, entre otras marcas, en adelante podrán elegir entre dos proveedores de paneles OLED. LG tiene una tecnología robusta y una trayectoria larga, y Samsung aún tiene que demostrar cómo rinden sus nuevos paneles y su fiabilidad, pero no cabe duda de que en adelante la competencia será mayor. Y esta siempre es una buena noticia para los usuarios.

QD-OLED: así funcionan los paneles orgánicos para televisores de Samsung

La cualidad más relevante que tienen los paneles OLED es su capacidad de emitir luz sin necesidad de recurrir a una fuente de iluminación externa, algo que sí deben hacer los paneles LCD. Esto es posible porque utilizan diodos orgánicos, unos componentes electrónicos semiconductores que permiten y controlan el paso de la corriente eléctrica en un único sentido.

Los paneles OLED que fabrica LG Display son de tipo W-OLED ('White OLED')

A diferencia de los diodos convencionales, los que utilizan material orgánico tienen la capacidad de reaccionar a la estimulación eléctrica emitiendo luz, de ahí que la tecnología OLED sea autoemisiva.

Hasta aquí no hay ninguna diferencia entre los paneles OLED que fabrica LG y los que ya está produciendo Samsung. Sin embargo, si nos ceñimos a la estrategia a la que recurren para reproducir el color aparece la primera diferencia significativa entre ambas tecnologías. Los paneles OLED que fabrica LG Display son de tipo W-OLED (White OLED), por lo que la luz que emite cada una de las celdillas autoemisivas del panel es de color blanco.

El problema es que para componer una imagen en color necesitamos obtener los tres colores primarios RGB (rojo, verde y azul), por lo que es necesario colocar encima de la matriz de diodos orgánicos un filtro de color RGB que sea capaz de reproducirlos.

Curiosamente, esta tecnología no la diseñó originalmente LG. Durante muchos años la compañía que más esfuerzos había realizado para desarrollar la tecnología OLED fue Kodak, y en 2004 hizo un anuncio sorprendente: había conseguido resolver la principal desventaja que tenían los paneles OLED RGB, que consistía en la degradación prematura de los subpíxeles de color azul. Además, su solución permitía fabricar paneles OLED con un tamaño muy superior al de los paneles de este tipo que se producían en ese momento. Y con un coste inferior.

La tecnología que había implementado Kodak era, precisamente, White OLED. La compañía estadounidense patentó su innovación, pero su estado financiero en ese momento no era bueno debido, entre otras razones, a lo mucho que se había resentido desde finales de la década de los años 90 el mercado de la fotografía de película, que era una de las principales fuentes de ingresos de Kodak.

Esta situación provocó que los responsables de la compañía decidiesen abandonar el desarrollo de la tecnología OLED, por lo que a finales de 2009 LG compró a Kodak esta área de negocio y las patentes que había desarrollado por 100 millones de dólares. El resto es historia.

Qd Oledestructura En esta imagen reclaman el protagonismo las dos capas más relevantes de los paneles QD-OLED: la matriz de diodos orgánicos que se responsabiliza de entregar la luz azul y la capa de nanocristales que se encarga de modificar la longitud de onda de la luz azul para generar los colores rojo y verde.

La principal ventaja de los paneles White OLED que fabrica LG Display frente a los RGB OLED convencionales es que, como hemos visto, no adolecen de la degradación prematura del subpíxel azul. Además, su producción es más sencilla, barata y permite obtener paneles con un tamaño sensiblemente mayor al de los paneles RGB OLED. Sin embargo, no todo son ventajas.

La tecnología W-OLED requiere la colocación encima de la matriz de diodos orgánicos de un filtro de color RGB

La tecnología W-OLED requiere, como hemos visto, la colocación encima de la matriz de diodos orgánicos de un filtro de color RGB que permite la reproducción de los tres colores básicos, pero que, a cambio, absorbe luz, reduciendo sensiblemente la capacidad de entrega de brillo de los paneles W-OLED frente a los RGB OLED. Y, además, su capacidad de reproducción del color es inferior a la de esta última tecnología.

Qd Oledazul La luz azul que a largo plazo puede degenerar nuestra retina es la situada en el rango que se extiende entre los 415 y los 455 nm, y, según Samsung, sus paneles emiten entre un 12 y un 14% de esta luz, frente al 20-25% emitido por los televisores LCD LED convencionales.

La razón por la que ha merecido la pena que hagamos este pequeño repaso consiste en que, precisamente, la tecnología QD-OLED que ha desarrollado Samsung aspira a resolver los dos hándicaps de W-OLED, pero intentando mantener sus bazas frente a RGB OLED. Lo que propone Samsung es reemplazar el filtro RGB que requieren los paneles W-OLED por una matriz de nanocristales, o puntos cuánticos, que se responsabilice de la reproducción del color.

Qd Oledcolor Según Samsung los nanocristales que utiliza en sus paneles autoemisivos consiguen cubrir el 80% del espacio de color BT.2020. Si realmente son capaces de entregarnos esta cobertura de color la colorimetría de los televisores que los incorporan debería ser muy solvente.

En teoría la eliminación del filtro RGB debería permitir al panel arrojar una capacidad de entrega de brillo superior tanto al medir el valor medio como los picos. Y, además, los nanocristales deberían conseguir reproducir un espacio de color sensiblemente más amplio que el filtro de color RGB.

No obstante, los cambios que propone Samsung frente a la tecnología W-OLED no acaban aquí. A diferencia de los paneles OLED de LG Display, que utilizan píxeles de color blanco, los de Samsung recurren a píxeles de color azul, de manera que serán los nanocristales los responsables de actuar sobre la luz azul para generar los otros dos colores primarios (rojo y verde).

Esta transformación es posible gracias a una propiedad muy interesante de los nanocristales: su estructura les permite modificar la longitud de onda de la luz, de ahí que consigan manipular la luz azul para generar a partir de ella luz roja y verde.

Los nanocristales tienen la peculiar capacidad de modificar la longitud de onda de la luz

Los «puntos cuánticos» son un tipo de nanocristales compuestos por materiales semiconductores con unas propiedades muy curiosas. Y es que su tamaño es tan pequeño que su comportamiento queda descrito por las leyes de la mecánica cuántica, y no podría ser explicado utilizando la mecánica clásica.

Sus características electrónicas están definidas, por un lado, por su tamaño, y, por otro, por su forma, lo que explica que actualmente se estén utilizando nanocristales para aplicaciones muy diferentes, como son la tecnología fotovoltaica, el etiquetado biológico, las tecnologías de eliminación de agentes contaminantes… Y, por supuesto, en electrónica.

Qd Oledbrillo La capacidad mínima de entrega de brillo de los paneles QD-OLED, según Samsung, es 0,0005 nits (cuanto más baja sea, mejor). Y la máxima asciende a 1000 nits. Además, su brillo residual es de 158 nits, una cifra más atractiva que los 200 nits en los que se mueven los televisores LCD con retroiluminación LED.

El reto durante el proceso de fabricación de los puntos cuánticos consiste en controlar con mucha precisión el tamaño de los nanocristales. De esta forma es posible conseguir partículas que brillen en cualquier tono del espectro de luz visible al ser excitadas por una corriente eléctrica, colores entre los que se encuentran, por supuesto, el rojo, el verde y el azul que necesitamos para componer el color a través de un panel RGB como los utilizados en los televisores.

El reto durante el proceso de fabricación de los puntos cuánticos consiste en controlar con mucha precisión el tamaño de los nanocristales

En cualquier caso, es evidente que Samsung conoce bien las técnicas de fabricación de los puntos cuánticos debido a que ha utilizado esta tecnología con profusión en sus últimas generaciones de televisores QLED. Por esta razón se le presupone un bagaje que sin duda le habrá resultado valioso durante la puesta a punto de los paneles QD-OLED.

Estas son las mejoras de los paneles QD-OLED de segunda generación

Las matrices orgánicas que nos propone Samsung en 2023 no son iguales que las de 2022. Una de las mejoras más impactantes introducidas por los técnicas de esta marca en la segunda generación de matrices QD-OLED es su capacidad máxima de entrega de brillo. Los paneles de 2022 eran, sobre el papel, capaces de entregar picos de 1.500 nits, y las matrices con las que podemos hacernos este año son capaces de rozar, según esta marca, los 2.000 nits. Es impactante, sobre todo si tenemos presente que los paneles OLED hasta ahora apenas eran capaces de entregar 1.000 nits en regiones acotadas de la matriz.

Es evidente que este año tanto Samsung como LG se han puesto las pilas con el brillo. Y es que la tecnología MLA (Meta-lit Lens Array) que ha desarrollado esta última marca permite a sus televisores W-OLED de 2023 entregarnos, en teoría, picos de 2.100 nits. Hace unos meses era impensable que un televisor OLED alcanzase los 2.000 nits. Además, Samsung nos promete algo importante: sus nuevos paneles QD-OLED entregan este brillo sin degradar el color. Será interesante ponerlos a prueba cuando caigan en nuestras manos con contenidos HDR de calidad.

Qd Oled 1

Otra mejora que nos proponen los paneles QD-OLED de segunda generación que merece la pena que no pasemos por alto es su fiabilidad. Y es que, según Samsung, su vida útil es más larga y minimizan la probabilidad de que se produzca retención de imágenes estáticas en el panel. De hecho, según esta marca sus matrices orgánicas para 2023 son el doble de fiables que las del año pasado. Suena bien, pero esto no es todo: también consumen menos.

Las matrices QD-OLED de 2023 rozan, según Samsung, picos de 2.000 nits

Durante la sesión técnica en la que hemos participado los técnicos de Samsung han hecho hincapié en lo mucho que se han esforzado para optimizar la reproducción del color y mantener un alto nivel de saturación cuando la entrega de brillo se incrementa drásticamente. De hecho, han desarrollado una estrategia nueva para evaluar la capacidad de entrega de brillo del panel y la colorimetría de forma conjunta. Y, según ellos, los nuevos paneles QD-OLED rinden mejor en esta área que sus predecesores.

Qd Oled 2

Las mejoras implementadas en los paneles QD-OLED de segunda generación son el resultado de la combinación de dos ingredientes diferentes. El primero de ellos es la estructura física de la matriz, en la que destaca la lámina de nanocristales (o puntos cuánticos, como los llama Samsung) impresa de alta eficiencia que se responsabiliza de la reproducción del color. El segundo ingrediente es un algoritmo de procesado de la señal de vídeo que recurre a la inteligencia artificial para refinarla y alinearla con la percepción de calidad de imagen que tiene el espectador.

Qd Oled 3

La última imagen en la que merece la pena que nos detengamos resume las mejoras que, según Samsung, nos ofrecen los nuevos paneles QD-OLED si los comparamos con las matrices de 2022. Podemos entender la luminancia de una forma intuitiva como la cantidad de luz que es capaz de entregar una fuente luminosa, y, de acuerdo con esta marca, la vinculada a los colores primarios RGB es un 130% superior a la de los anteriores paneles.

La luminancia vinculada a los colores primarios RGB de las matrices QD-OLED de 2ª generación es un 130% superior a la de los anteriores paneles

Además, su fiabilidad es dos veces más alta y su consumo es inferior. Durante la sesión técnica los ingenieros de Samsung se esforzaron para resultar convincentes, y en cierta medida lo fueron porque emplearon argumentos sólidos desde un punto de vista técnico.

Qd Oled 4

QD-OLED: qué promete y qué tiene todavía que demostrar

Todo lo que hemos visto hasta este momento responde a lo que nos dice la teoría, pero a veces llevarlo a la práctica requiere aceptar algunos compromisos. No cabe duda de que la entrada de Samsung en la industria de la producción de paneles OLED de gran formato amenaza la hegemonía indiscutible que mantiene LG desde hace años, pero no podemos pasar por alto que esta última empresa ya está comercializando su tercera generación de paneles OLED. Y, por esta razón, los usuarios ya sabemos con precisión qué nos proponen. Cuáles son sus fortalezas. Y también sus debilidades.

QD-OLED es una nueva tecnología de panel, y lo prudente es no dar nada por sentado hasta que tengamos la ocasión de probarla a fondo

Samsung, por el contrario, aún tiene que demostrarnos qué nos ofrecen sus paneles QD-OLED. Esta tecnología se afianza sobre innovaciones que conocemos bien, como son los puntos cuánticos y las matrices de diodos orgánicos, pero, aun así, es una nueva tecnología de panel, y lo prudente es no dar nada por sentado hasta.

Cuando llegue el momento comprobaremos si los paneles QD-OLED no adolecen de degradación prematura de los píxeles azules de la matriz; si su resiliencia a la retención de las imágenes estáticas es idéntica, mejor o peor que la de los paneles OLED convencionales; si realmente reproducen el color con tanta precisión y riqueza como nos dicen Sony y Samsung; si su capacidad de entrega de brillo máxima efectiva roza los 2.000 nits, etc.

En Xataka: Los televisores 8K venden cada vez más. La pregunta ahora es cuándo llegarán los contenidos a su altura

Inicio